Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.606
Filtrar
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611827

RESUMO

Essential oil (EO) of Salvia spp. has been widely used for culinary purposes and in perfumery and cosmetics, as well as having beneficial effects on human health. The present study aimed to investigate the quantitative and qualitative variations in EOs in wild-growing and cultivated pairs of samples from members in four Salvia sections or three clades, namely S. argentea L. (Sect. Aethiopis; Clade I-C), S. ringens Sm. (Sect. Eusphace; Clade I-D), S. verticillata L. (Sect. Hemisphace; Clade I-B), S. amplexicaulis Lam., and S. pratensis L. (Sect. Plethiosphace; Clade I-C). Furthermore, the natural variability in EO composition due to different genotypes adapted in different geographical and environmental conditions was examined by employing members of three Salvia sections or two phylogenetic clades, namely S. sclarea L. (six samples; Sect. Aethiopis or Clade I-C), S. ringens (three samples; Sect. Eusphace or Clade I-D), and S. amplexicaulis (five samples; Sect. Plethiosphace or Clade I-C). We also investigated the EO composition of four wild-growing species of two Salvia sections, i.e., S. aethiopis L., S. candidissima Vahl, and S. teddii of Sect. Aethiopis, as well as the cultivated material of S. virgata Jacq. (Sect. Plethiosphace), all belonging to Clade I-C. The EO composition of the Greek endemic S. teddii is presented herein only for the first time. Taken together, the findings of previous studies are summarized and critically discussed with the obtained results. Chemometric analysis (PCA, HCA, and clustered heat map) was used to identify the sample relationships based on their chemical classes, resulting in the classification of two distinct groups. These can be further explored in assistance of classical or modern taxonomic Salvia studies.


Assuntos
Óleos Voláteis , Salvia , Humanos , Quimiometria , Filogenia , Genótipo , Salvia/genética
2.
Molecules ; 29(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542863

RESUMO

From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-type diterpenoids were isolated. Their structures were established through spectroscopic methods and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an IC50 (µM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (µM) = 0.45 ± 0.01 and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other hand, the phytotoxicity of compounds 5-7 and 9-10 was evaluated on seed germination and root growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are also discussed.


Assuntos
Alcaloides , Diterpenos , Neoplasias Pulmonares , Salvia , Humanos , Abietanos/farmacologia , Abietanos/química , Salvia/química , Diterpenos/farmacologia , Diterpenos/química , Linhagem Celular Tumoral , Estrutura Molecular
3.
Food Funct ; 15(8): 4051-4064, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38535983

RESUMO

This study evaluated the nutritional profile and fiber content of innovative formulations of wheat-based biscuits enriched with chia seeds, carob flour and coconut sugar. The in vitro antioxidant, cytotoxic, anti-inflammatory and antimicrobial activities were also investigated to understand the potential health advantages of the incorporation of these new ingredients. The novel biscuits demonstrated significant improvements in protein and mineral content, with increases of 50% and 100% in chia biscuits, and up to 20% and 40% in carob biscuits, respectively. Fiber also notably increased, particularly in samples containing 10% carob flour, which increased four times as compared to wheat-based samples. The new ingredients exhibited antibacterial and antifungal activity, particularly against Yersinia enterocolitica (minimum inhibitory concentration 1.25 mg mL-1 in coconut sugar) and Aspergillus fumigatus (minimum inhibitory concentration/minimum fungicidal concentrations 2.5/5 mg mL-1 in chia seeds). However, the final biscuits only displayed antifungal properties. Carob flour and chia seeds had a remarkably high capacity to inhibit the formation of TBARS and promoted greater antioxidant activity in biscuit formulations, with EC50 values decreasing from 23.25 mg mL-1 (control) to 4.54 mg mL-1 (15% defatted ground chia seeds) and 1.19 mg mL-1 (10% carob flour). Only chia seeds exhibited cellular antioxidant, anti-inflammatory and cytotoxic activity, attributes that were lost when seeds were added into the biscuits. These findings highlight the potential health benefits of these ingredients, particularly when incorporated in new wheat-based formulations.


Assuntos
Antioxidantes , Fibras na Dieta , Farinha , Galactanos , Mananas , Valor Nutritivo , Triticum , Triticum/química , Fibras na Dieta/análise , Fibras na Dieta/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Farinha/análise , Sementes/química , Gomas Vegetais/química , Gomas Vegetais/farmacologia , Anti-Infecciosos/farmacologia , Salvia/química , beta-Glucanas/farmacologia , beta-Glucanas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Pão/análise , Antibacterianos/farmacologia , Antibacterianos/química , Goma Arábica/química , Goma Arábica/farmacologia , Animais , Testes de Sensibilidade Microbiana , Humanos
4.
Int J Food Microbiol ; 415: 110639, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38417281

RESUMO

Aflatoxin B1 (AFB1) is one of the most hazardous mycotoxins for humans and livestock that mainly produced by members of the genus Aspergillus in a variety of food commodities. In this study, the effect of S. rosmarinus, T. fruticulosum, and T. caucasicum essential oils (EOs) was studied on fungal growth, AFB1 production and aflR gene expression in toxigenic A. flavus IPI 247. The AFB1 producer A. flavus strain was cultured in YES medium in presence of various two-fold concentrations of the plant EOs (62.5-500 µg/mL) for 4 days at 28 °C. EO composition of plants was analyzed by Gas Chromatography/Mass Spectrometry (GC/MS). The amount of fungal growth, ergosterol content of fungal mycelia and AFB1 content of EO-treated and non-treated controls were measured. The expression of aflR gene was evaluated using Real-time PCR in the fungus exposed to minimum inhibitory concentration (MIC50) of EOs. The main constituents of the oils analyzed by GC/MS analysis were elemicin (33.80 %) and 2,3-dihydro farnesol (33.19 %) in T. caucasicum, 1,8-cineole (17.87 %), trans-caryophyllene (11.14 %), α and ẞ-pinene (10.92 and 8.83 %) in S. rosmarinus, and camphor (17.65 %), bornyl acetate (15.08 %), borneol (12.48 %) and camphene (11.72 %) in T. fruticulosum. The results showed that plant EOs at the concentration of 500 µg/mL suppressed significantly the fungal growth by 35.24-71.70 %, while mycelial ergosterol content and AFB1 production were inhibited meaningfully by 36.20-65.51 % and 20.61-89.16 %. T. caucasicum was the most effective plant, while T. fruticulosum showed the lowest effectiveness on fungal growth and AFB1 production. The expression of aflR in T. caucasicum and S. rosmarinus -treated fungus was significantly down-regulated by 2.85 and 2.12 folds, respectively, while it did not change in T. fruticulosum-treated A. flavus compared to non-treated controls. Our findings on the inhibitory activity of T. caucasicum and S. rosmarinus EOs toward A. flavus growth and AFB1 production could promise these plants as good candidates to control fungal contamination of agricultural crops and food commodities and subsequent contamination by AFB1. Down-regulation of aflR as the key regulatory gene in AF biosynthesis pathway warrants the use of these plants in AF control programs. Further studies to evaluate the inhibitory activity of studied plants EOs in food model systems are recommended.


Assuntos
Óleos Voláteis , Rosmarinus , Salvia , Tripleurospermum , Humanos , Aspergillus flavus/metabolismo , Aflatoxina B1 , Óleos Voláteis/farmacologia , Rosmarinus/química , Tripleurospermum/genética , Expressão Gênica , Ergosterol/metabolismo , Ergosterol/farmacologia , Antifúngicos/farmacologia
5.
Biomed Pharmacother ; 173: 116352, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417289

RESUMO

Salvia amarissima Ortega is a plant used in traditional medicine to treat CNS's affections. Despite its depressant properties in anxiety and fibromyalgia, there is no scientific evidence about its capability to control seizure activity. This study aimed to investigate the effects of the S. amarissima aqueous extract (SAAE) and its metabolite amarisolide A (AMA) on the electrocorticographic (ECoG) activity. The ECoG profiles were previously and concurrently analyzed to the pentylenetetrazole (85 mg/kg, i.p.)-induced seizure behavior after thirty min of the administration of several doses of the SAAE (1, 10, 30, and 100 mg/kg, i.p.) and two doses of AMA (0.5 and 1 mg/kg, i.p.). A dosage of AMA (1 mg/kg,i.p.) was selected to explore a possible mechanism of action by using antagonists of inhibitory receptors such as GABAA (picrotoxin, 1 mg/kg, i.p.) or 5-HT1A of serotonin (WAY100635, 1 mg/kg, i.p.). Significant changes in the frequency bands and the spectral power were observed after the treatment alone. Additionally, SAAE and AMA produced significant and dose-dependent anticonvulsant effects by reducing the incidence and severity of seizures and increasing latency or survival. Both antagonists prevented the effects of AMA in the severity score of seizures and survival during the tonic-clonic seizures. In conclusion, our preclinical data support that S. amarissima possesses anticonvulsant properties, in part due to the presence of amarisolide A, mediated by different inhibitory mechanisms of action. Our scientific evidence suggests that this Salvia species and amarisolide A are potential neuroprotective alternatives to control seizures in epilepsy therapy.


Assuntos
Anticonvulsivantes , Salvia , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Pentilenotetrazol , Picrotoxina/efeitos adversos , Água , Relação Dose-Resposta a Droga , Extratos Vegetais/efeitos adversos
6.
Molecules ; 29(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338335

RESUMO

Methanolic-aqueous extracts of Salvia tomentosa Miller roots, aerial parts, and inflorescences were examined for their content of polyphenolic derivatives and the antimicrobial and cytotoxic effect. In the polyphenolic-rich profile, rosmarinic, salvianolic, and lithospermic acids along with various derivatives were predominant. A total of twenty phenolic compounds were identified using the UPLC/DAD/qTOF-MS technique. These were caffeic acid, rosmarinic acid derivatives, lithospermic acid derivatives, salvianolic acids B, F, and K derivatives, as well as sagerinic acid, although rosmarinic acid (426-525 mg/100 g of dry weight-D.W.) and salvianolic acid B (83-346.5 mg/100 g D.W.) were significantly predominant in the metabolic profile. Strong antibacterial activity of S. tomentosa extracts was observed against Staphylococcus epidermidis (MIC/MBC = 0.625 mg/mL) and Bacillus cereus (MIC = 0.312-1.25 mg/mL). The extracts showed low cytotoxicity towards the reference murine fibroblasts L929 and strong cytotoxicity to human AGS gastric adenocarcinoma epithelial cells in the MTT reduction assay. The observed cytotoxic effect in cancer cells was strongest for the roots of 2-year-old plant extracts.


Assuntos
Benzofuranos , Depsídeos , Infecções Oportunistas , Salvia miltiorrhiza , Salvia , Animais , Camundongos , Humanos , Pré-Escolar , Extratos Vegetais/farmacologia , Bactérias
7.
Molecules ; 29(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338370

RESUMO

The objective of this study was the optimization of the extraction process and the qualitative and quantitative determination of the bioactive metabolites: 12-O-methylcarnosic acid (12MCA), carnosic acid (CA), carnosol (CS), 7-O-methyl-epi-rosmanol (7MER) and rosmanol (RO) in infusions, decoctions, turbulent flow extracts, tinctures and oleolites from three Salvia species: Salvia officinalis L. (common sage, SO), Salvia fruticosa Mill. (Greek sage, SF) and Salvia rosmarinus Spenn (syn Rosmarinus officinalis L.) (rosemary, SR), using Quantitative Proton Nuclear Magnetic Resonance Spectroscopy (1H-qNMR). Regarding the aqueous extracts, decoctions appeared to be richer sources of the studied metabolites than infusions among the three plants. For SR, the turbulent flow extraction under heating was the most efficient one. The optimum time for the preparation of decoctions was found to be 5 min for SF and SO and 15 min for SR. It is noteworthy that SR tinctures were not stable in time due to decomposition of the abietane-type diterpenes CA and CS because of the polar solvent used for their preparation. Contrary to this finding, the oleolites of SR appeared to be very stable. Olive oil as a solvent for extraction was very protective for the contained abietane-type diterpenes. A preliminary stability study on the effect of the storage time of the SF on the abietane-type diterpenes content showed that the total quantity of abietanes decreased by 16.51% and 40.79% after 12 and 36 months, respectively. The results of this investigation also demonstrated that 1H-qNMR is very useful for the analysis of sensitive metabolites, like abietane-type diterpenes, that can be influenced by solvents used in chromatographic analysis.


Assuntos
Diterpenos , Rosmarinus , Salvia , Abietanos/química , Rosmarinus/química , Salvia/química , Grécia , Extratos Vegetais/química , Solventes , Diterpenos/análise
8.
Sci Rep ; 14(1): 3046, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321199

RESUMO

Tanshinones, are a group of diterpenoid red pigments present in Danshen - an important herbal drug of Traditional Chinese Medicine which is a dried root of Salvia miltiorrhiza Bunge. Some of the tanshinones are sought after as pharmacologically active natural products. To date, the biosynthetic pathway of tanshinones has been only partially elucidated. These compounds are also present in some of the other Salvia species, i.a. from subgenus Perovskia, such as S. abrotanoides (Kar.) Sytsma and S. yangii B.T. Drew. Despite of the close genetic relationship between these species, significant qualitative differences in their diterpenoid profile have been discovered. In this work, we have used the Liquid Chromatography-Mass Spectrometry analysis to follow the content of diterpenoids during the vegetation season, which confirmed our previous observations of a diverse diterpenoid profile. As metabolic differences are reflected in different transcript profile of a species or tissues, we used metabolomics-guided transcriptomic approach to select candidate genes, which expression possibly led to observed chemical differences. Using an RNA-sequencing technology we have sequenced and de novo assembled transcriptomes of leaves and roots of S. abrotanoides and S. yangii. As a result, 134,443 transcripts were annotated by UniProt and 56,693 of them were assigned as Viridiplantae. In order to seek for differences, the differential expression analysis was performed, which revealed that 463, 362, 922 and 835 genes indicated changes in expression in four comparisons. GO enrichment analysis and KEGG functional analysis of selected DEGs were performed. The homology and expression of two gene families, associated with downstream steps of tanshinone and carnosic acid biosynthesis were studied, namely: cytochromes P-450 and 2-oxoglutarate-dependend dioxygenases. Additionally, BLAST analysis revealed existence of 39 different transcripts related to abietane diterpenoid biosynthesis in transcriptomes of S. abrotanoides and S. yangii. We have used quantitative real-time RT-PCR analysis of selected candidate genes, to follow their expression levels over the vegetative season. A hypothesis of an existence of a multifunctional CYP76AH89 in transcriptomes of S. abrotanoides and S. yangii is discussed and potential roles of other CYP450 homologs are speculated. By using the comparative transcriptomic approach, we have generated a dataset of candidate genes which provides a valuable resource for further elucidation of tanshinone biosynthesis. In a long run, our investigation may lead to optimization of diterpenoid profile in S. abrotanoides and S. yangii, which may become an alternative source of tanshinones for further research on their bioactivity and pharmacological therapy.


Assuntos
Salvia miltiorrhiza , Salvia , Salvia/metabolismo , Abietanos , Salvia miltiorrhiza/genética , Perfilação da Expressão Gênica , Sistema Enzimático do Citocromo P-450/genética , Raízes de Plantas/metabolismo
9.
Sci Rep ; 14(1): 5017, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424151

RESUMO

Range contraction and habitat fragmentation can cause biodiversity loss by creating conditions that directly or indirectly affect the survival of plant populations. Fragmented habitats can alter pollinator guilds and impact their behavior, which may result in pollen/pollinator limitation and selection for increased selfing as a mechanism for reproductive assurance. We used Salvia brachyodon, a narrowly distributed and endangered sage from eastern Adriatic, to test the consequences of range contraction and habitat fragmentation. Molecular data indicate a severe and relatively recent species range reduction. While one population is reproductively almost completely isolated, moderate gene flow has been detected between the remaining two populations. The high pollen-to-ovule ratio and the results of controlled hand pollination indicate that S. brachyodon has a mixed mating system. Quantitative and qualitative differences in the community and behaviour of flower visitors resulted in limited pollination services in one population where no effective pollinator other than pollen and nectar robbers were observed. In this population, self-pollination predominated over cross-pollination. Various environmental factors, in which plant-pollinator interactions play a pivotal role, have likely created selection pressures that have led to genetic and phenotypic differentiation and different resource allocation strategies among populations.


Assuntos
Fluxo Gênico , Salvia , Salvia/genética , Polinização , Néctar de Plantas , Reprodução , Flores
10.
PLoS One ; 19(2): e0297512, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306362

RESUMO

The immune-enhancing activity of the combination of Platycodon grandiflorum and Salvia plebeian extracts (PGSP) was evaluated through macrophage activation using RAW264.7 cells. PGSP (250-1000 µg/mL) showed a higher release of NO in a dose-dependent manner. The results showed that PGSP could significantly stimulate the production of PGE2, COX-2, TNF-α, IL-1ß, and IL-6 in RAW264.7 cells and promote iNOS, COX-2, TNF-α, IL-1ß, IL-4, and IL-6 mRNA expression. Western blot analysis demonstrated that the protein expression of iNOS and COX-2 and the phosphorylation of ERK, JNK, p38, and NF-κB p65 were greatly increased in PGSP-treated cells. PGSP also promoted the phagocytic activity of RAW264.7 cells. All these results indicated that PGSP might activate macrophages through MAPK and NF-κB signaling pathways. Taken together, PGSP may be considered to have immune-enhancing activity and might be used as a potential immune-enhancing agent.


Assuntos
Platycodon , Salvia , Animais , Camundongos , NF-kappa B/metabolismo , Platycodon/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Salvia/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interleucina-6/genética , Citocinas/genética , Citocinas/metabolismo , Células RAW 264.7 , Lipopolissacarídeos
11.
Int J Radiat Biol ; 100(4): 663-668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265867

RESUMO

PURPOSE: Salvia uliginosa is a desirable ornamental shrub for the landscape with blue flowers and the ability to attract pollinators, but limited variation is commercially available in this species. Mutation breeding is a valuable tool to induce variation in ornamental species. However, many deleterious effects are associated with mutation breeding, including reduced rooting ability of vegetative cuttings. MATERIALS AND METHODS: Cuttings of S. uliginosa were randomly assigned into groups of 10 and exposed to 0, 10, 20, 30, 40, or 50 Gy of gamma rays from a cobalt-60 source to determine an appropriate treatment rate. A follow-up experiment treated 25 S. uliginosa cuttings at 35 Gy to induce favorable mutations. RESULTS AND CONCLUSIONS: Root quality, survival, and plant height were reduced at higher levels of gamma radiation in the M1V1. However, rooting ability was not impacted in M1V2 selections. Additionally, one mutant was isolated from the 35 Gy treatment with variegated leaves for a mutation rate of 4%. Our research determined a treatment rate that induced a dominant mutation in S. uliginosa while minimizing the deleterious influence of gamma radiation.


Assuntos
Salvia , Folhas de Planta
12.
Int J Biol Macromol ; 263(Pt 2): 129787, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296145

RESUMO

Two chia mucilages with different viscosities, obtained by extraction conditions optimized in a previous work, were homogenized by high pressure homogenization (HPH). Particle size, molecular weight, zeta potential, FTIR spectrum, rheological properties, water absorption capacity, water holding capacity and iron binding capacity were determined on both mucilages treated and without treatment. Homogenization led to a significant reduction in viscosity respect to chia mucilage controls, which can be related to the decrease in particle size and molecular weight. A high iron binding capacity was obtained for both mucilages. FTIR spectra of both mucilages with iron showed displacements in bands related with stretching of carboxylic uronic acids, suggesting the interaction site with this mineral. This interaction was also verified by particle size determination with a displacement to higher sizes in the presence of iron. Potential zeta showed a significant reduction in the presence of iron. A model to explain the binding between chia mucilage and iron is proposed. HPH appears as an alternative to expand chia mucilage functionality reducing the viscosity of chia mucilage solutions for the offer of a new ingredient also with optimal levels of hydration and iron binding capacity.


Assuntos
Mucilagem Vegetal , Salvia , Mucilagem Vegetal/química , Sementes/química , Salvia/química , Polissacarídeos/química , Ferro/análise , Água/análise
13.
J Org Chem ; 89(3): 1858-1863, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215471

RESUMO

Salpratone A (1), a novel abietane diterpenoid containing a unique cis-fused A/B ring, was isolated from Salvia prattii. Bioactivity studies showed that 1 has potent activity in inhibiting platelet aggregation induced by multiple agonists as well as antithrombotic efficacy in the FeCl3-induced rat in vivo thrombosis model. Furthermore, a bioinspired synthesis of 1 from the abundant natural product ferruginol was achieved in 6 steps with a 22% overall yield. The key steps include a stereoselective allyl oxidation and a subsequent regioselective Meinwald rearrangement.


Assuntos
Abietanos , Salvia , Animais , Ratos , Salvia/química , Abietanos/síntese química
14.
Sci Rep ; 14(1): 967, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200089

RESUMO

Flowers cluster at various spatial scales, so pollinators use information from multiple scales when foraging in natural plant populations. Little is known about the effects of interactions between scales or their relative strength. We examined bumblebee foraging behaviour in a natural population of Salvia nipponica in 10 and 7 patches in 2019 and 2020, respectively. We recorded within-patch factors (display size of racemes and local open raceme densities) and patch-level factors (patch size and distance from the nearest patch) and analysed their relationships with pollinator behaviour. The numbers of visits per raceme and flower were mainly affected by the interaction of patch size and raceme density; they were higher in locations with lower raceme density in larger patches. The ratio of flowers visited to all open flowers in a raceme during a raceme visit, which relates to a bumblebee's choice to leave a raceme, was mainly affected by the interaction of display size and local open raceme density; in 2019 it was higher in racemes with smaller display sizes, while in 2020 the strength and direction of the relationship depended on the open raceme density. These results suggest that pollinators relied on the sizes of flower clusters at different spatial scales when visiting and leaving racemes and adjusted their responses to the sizes of flower clusters depending on the distances between clusters. Therefore, it is important to evaluate factors at various spatial scales and their interactions to fully understand pollinator behaviour in natural plant populations.


Assuntos
Salvia , Flores , Registros
15.
BMC Plant Biol ; 24(1): 56, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238679

RESUMO

Salvia verticillata L. is a well-known herb rich in rosmarinic acid (RA) and with therapeutic values. To better understand the possible roles of phytohormones in the production of phenolic acids in S. verticillata, in this work, we investigated some physiological and biochemical responses of the species to methyl jasmonate (MJ) and multi-walled carbon nanotubes (MWCNTs) as two effective elicitors. The leaves were sprayed with aqueous solutions containing 100 mg L-1 MWCNTs and 100 µM MJ and then harvested during interval times of exposure up to 96 h. The level of abscisic acid, as the first effective phytohormone, was altered in the leaves in response to MJ and MWCNTs elicitation (2.26- and 3.06-fold more than the control, respectively), followed by significant increases (P ˂ 0.05) detected in jasmonic acid and salicylic acid contents up to 8 h after exposure. Obtained data revealed that simultaneously with changes in phytohormone profiles, significant (P ˂ 0.05) rises were observed in the content of H2O2 (8.85- and 9.74-folds of control), and the amount of lipid peroxidation (10.18- and 17.01-folds of control) during the initial times after exposure to MJ and MWCNTs, respectively. Later, the content of phenolic acids increased in the elicited leaves due to changes in the transcription levels of key enzymes involved in their biosynthesis pathways, so 2.71- and 11.52-fold enhances observed in the RA content of the leaves after exposure to MJ and MWCNTs, respectively. It is reasonable to conclude that putative linkages between changes in some phytohormone pools lead to the accumulation of phenolic acids in the leaves of S. verticillata under elicitation. Overall, the current findings help us improve our understanding of the signal transduction pathways of the applied stimuli that led to enhanced secondary metabolite production in medicinal plants.


Assuntos
Acetatos , Nanotubos de Carbono , Salvia , Reguladores de Crescimento de Plantas/farmacologia , Peróxido de Hidrogênio/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo
16.
Sci Rep ; 14(1): 1885, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38253648

RESUMO

In recent years, there have been an attempt to develop safe and environmental friendly solvents to replace conventional solvents, and use for extraction bioactive compounds from natural sources. A current investigation involved the preparation of green, methanolic, and ultrasonic extracts of S. sclarea, and compared their phenolic profiling using HPLC-DAD, antibacterial, antioxidant, and enzyme inhibition activities. The HPLC-DAD analysis revealed that Rosmarinic acid was the main content in all extracts, with Ellagic acid only present in the green extract. The green extract exhibited superior anti-biofilm activity against S. Aureus and E. Faecalis compared to the other extracts at MIC concentration. Furthermore, the green extract also displayed the highest inhibition of swarming motility in P. Aeruginosa with inhibition range 68.0 ± 2.1 (MIC) to 19.5 ± 0.6 (MIC/4). and better enzyme inhibitory activity against BChE (with IC50 = 131.6 ± 0.98 µg/mL) and AChE (with inhibition 47.00 ± 1.50%) compared to the other extracts; while, the ultrasonic extract showed strong inhibition of violacein production by C. Violaceum with a inhibition range 05.5 ± 0.1 (MIC/32) to 100 ± 0.00 (MIC), followed by the green extract with a inhibition range 15.0 ± 0.5 (MIC/8) to 100 ± 0.00 (MIC), additionally, the ultrasonic and methanoic extracts showed significant activity against urease enzyme with (IC50 = 171.6 ± 0.95 µg/mL and IC5 0 = 187.5 ± 1.32 µg/mL) respectively. Both the green and methanolic extracts showed considerable antioxidant activities, as ß-carotene-linoleic acid (IC50 = 5.61 ± 0.47 µg/mL and 5.37 ± 0.27 µg/mL), DPPH· (IC50 = 19.20 ± 0.70 µg/mL and 16.31 ± 0.23 µg/mL), ABTS·+(IC50 = 8.64 ± 0.63 µg/mL and 6.50 ± 0.45 µg/mL) and CUPRAC (A0.5 = 17.22 ± 0.36 µg/mL and 12.28 ± 0.12 µg/mL) respectively, likewise the green extract performing better in metal chelating compared to the other extracts. The green extraction is reported as a cost effective and solvent free method for extracting natural products that produces compounds free of toxic chemicals. This could be the method to be used in the industries as a renewable method.


Assuntos
Salvia , Antioxidantes/farmacologia , Metanol , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Solventes , Staphylococcus aureus
17.
Genes (Basel) ; 15(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38254999

RESUMO

The MYB transcription factor gene family is among the most extensive superfamilies of transcription factors in plants and is involved in various essential functions, such as plant growth, defense, and pigment formation. Salvia nemorosa is a perennial herb belonging to the Lamiaceae family, and S. nemorosa has various colors and high ornamental value. However, there is little known about its genome-wide MYB gene family and response to flower color formation. In this study, 142 SnMYB genes (MYB genes of S. nemorosa) were totally identified, and phylogenetic relationships, conserved motifs, gene structures, and expression profiles during flower development stages were analyzed. A phylogenetic analysis indicated that MYB proteins in S. nemorosa could be categorized into 24 subgroups, as supported by the conserved motif compositions and gene structures. Furthermore, according to their similarity with AtMYB genes associated with the control of anthocyanin production, ten SnMYB genes related to anthocyanin biosynthesis were speculated and chosen for further qRT-PCR analyses. The results indicated that five SnMYB genes (SnMYB75, SnMYB90, SnMYB6, SnMYB82, and SnMYB12) were expressed significantly differently in flower development stages. In conclusion, our study establishes the groundwork for understanding the anthocyanin biosynthesis of the SnMYB gene family and has the potential to enhance the breeding of S. nemorosa.


Assuntos
Salvia , Fatores de Transcrição , Fatores de Transcrição/genética , Salvia/genética , Antocianinas/genética , Filogenia , Melhoramento Vegetal
18.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255978

RESUMO

In the face of evolving healthcare challenges, the utilization of silver nanoparticles (AgNPs) has emerged as a compelling solution due to their unique properties and versatile applications. The aim of this study was the synthesis and characterization of novel AgNPs (SB-AgNPs and SG-AgNPs, respectively) using Salvia blepharophylla and Salvia greggii leaf extracts and the evaluation of their antimicrobial, antioxidant, and antidiabetic activities. Several analytical instrumental techniques were utilized for the characterization of SB-AgNPs and SG-AgNPs, including UV-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier transmission infrared (FT-IR) spectroscopy, energy-dispersive X-ray analysis (EDX), and X-ray diffraction (XRD). FTIR analysis identified various functional groups in the leaf extracts and nanoparticles, suggesting the involvement of phytochemicals as reducing and stabilizing agents. High-resolution TEM images displayed predominantly spherical nanoparticles with average sizes of 52.4 nm for SB-AgNPs and 62.5 nm for SG-AgNPs. Both SB-AgNPs and SG-AgNPs demonstrated remarkable antimicrobial activity against Gram-positive bacteria Staphylococcus aureus and Listeria monocytogenes and Gram-negative bacteria Salmonella typhimurium and Escherichia coli. SB-AgNPs and SG-AgNPs also exhibited 90.2 ± 1.34% and 89.5 ± 1.5% DPPH scavenging and 86.5 ± 1.7% and 80.5 ± 1.2% α-amylase inhibition, respectively, at a concentration of 100 µg mL-1. Overall, AgNPs synthesized using S. blepharophylla and Salvia greggii leaf extracts may serve as potential candidates for antibacterial, antioxidant, and antidiabetic agents. Consequently, this study provides viable solutions to mitigate the current crisis of antibiotic resistance and to efficiently combat antimicrobial infections and Type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas Metálicas , Salvia , Hipoglicemiantes , Antioxidantes/farmacologia , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Escherichia coli
19.
Food Funct ; 15(3): 1158-1169, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38239106

RESUMO

In recent years, as a functional potential pseudocereal, chia seed (Salvia hispanica L.) has been of great interest for its comprehensive nutritional profile and attractive qualities after ingestion. It is reported that a reasonable dietary supplementation of chia seed (CS) contributes to the prevention and treatment of acute and chronic diseases (inflammation, diabetes, hypertension, obesity, kidney stone, etc.). CS contains a variety of bioactive macromolecular substances, such as oil, protein and gum, which manifest distinguished health-promoting activities in both in vivo and in vitro research studies. This article provides a comprehensive compendium on the functional importance of CS, in the context of biological activities and mechanism of actions of CS. Specifically, CS and its components alleviate inflammation and regulate glucose and fatty acid metabolism by regulating key influencing factors in the adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB), peroxisome-activated receptor gamma (PPAR-γ) and transforming growth factor-beta (TGF-ß) pathways and the insulin receptor substrate (IRS)-mediated insulin signaling pathway. In the meantime, predictions of metabolic pathways of CS peptides based on the known tracks of newly researched active peptides were proposed, with the aim of emphasizing the enormous research space of CS peptides compared to other functional active peptides.


Assuntos
Obesidade , Salvia hispanica , Salvia , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Extratos Vegetais/metabolismo , Insulina/metabolismo , Inflamação/metabolismo , Sementes/química , Salvia/química
20.
Plant Foods Hum Nutr ; 79(1): 127-136, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38206479

RESUMO

Chia seeds (CS) and sprouts are rich sources of phenolic compounds and polyunsaturated fatty acids (PUFA). We hypothesized that the application of chemical stressors, such as salicylic acid (SA) and hydrogen peroxide (H2O2), would induce changes in the polyphenol and fatty acid profile of chia sprouts, leading to an increase in their nutraceutical potential. This study aimed to assess the effect of non-elicited (NE) and chemically elicited (CE with 1-mM SA and 20-mM H2O2) sprouting on the polyphenol and fatty acid (FA) profiles of chia through high-resolution liquid chromatography-mass spectrometry and chemometric analyses. NE and CE chia sprouts showed increased content and diversity of polyphenols compared to the CS but with lower content of FA. Interestingly, rosmarinic acid was the major polyphenol identified in CS and was increased about 4-fold in all chia sprouts, whereas the major PUFA of CS, α-linolenic acid, was reduced by 39%. Regarding the chemical elicitation, the multivariate analyses indicated that SA-elicited chia sprouts were characterized by their high content of most polyphenols, mainly flavones and isoflavones, as well as a high antioxidant capacity, whereas H2O2-elicited chia sprouts were differentiated by protects their PUFA composition and seedling growth parameters. These results demonstrate that the chemical elicitation with SA and H2O2 represents a promising approach for improving sprouts' nutraceutical quality and could be used in further research to develop strategies for agriculture and food production.


Assuntos
Peróxido de Hidrogênio , Salvia , Peróxido de Hidrogênio/farmacologia , Ácido Salicílico/análise , Antioxidantes/análise , Polifenóis/análise , Ácidos Graxos/análise , Compostos Fitoquímicos/análise , Sementes/química , Salvia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...